The Diagnostic Function of Optical Coherence Tomography in Diabetic Maculopathy

Document Type : Original Article

Abstract

Diabetic maculopathy (DM) is one of the major causes of vision impairment in individuals with diabetes. The traditional approach to diagnosis of DM includes fundus ophthalmoscopy and fluorescein angiography. Although very useful clinically, these methods do not contribute much to the evaluation of retinal morphology and its thickness profile. That is why a new technique called optical coherence tomography (OCT) was utilized to perform cross-sectional imaging of the retina. It facilitates measuring the macular thickening, quantification of diabetic macular edema, and detecting vitreoretinal traction. Thus, OCT may assist in patient selection with DM who can benefit from treatment, identify what treatment is indicated, guide its implementing, and allow precise monitoring of treatment response. It seems to be the technique of choice for the early detection 

D. Koleva-Georgieva and N. Sivkova, “Assessment of serous macular detachment in eyes with diabetic macular edema by use of spectral-domain optical coherence tomography,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 247, no. 11, pp. 1461–1469, 2009.
2-D. N. Koleva-Georgieva and N. P. Sivkova, “Types of diabetic macular edema assessed by optical coherence tomography,” Folia Medica, vol. 50, no. 3, pp. 30–38, 2008.
3-T. Otani, Y. Yamaguchi, and S. Kishi, “Correlation between visual acuity and foveal microstructural changes in diabetic macular edema,” Retina, vol. 30, no. 5, pp. 774–780, 2010.
4-A. S. Maheshwary, S. F. Oster, R. M. S. Yuson, L. Cheng, F. Mojana, andW. R. Freeman,“The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema, ”American Journal of Ophthalmology,vol.150, no.1, pp.63.e167.e1 ,2010.
5-H. J. Shin, S. H. Lee, H. Chung, and H. C. Kim, “Association between photoreceptor integrity and visualoutcome in diabetic macular edema,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 250, no. 1, pp. 61–70, 2012.
 6-J. Yohannan, M. Bittencourt, Y. J. Sepah et al., “Association of retinal sensitivity to integrity of photoreceptor inner/outer segment junction in patients with diabetic macular edema,” Ophthalmology, vol. 120, pp. 1254–1261, 2013.
7- J. I. Patel, P. G. Hykin, M. Schadt, V. Luong, F. Fitzke, and Z. J. Gregor, “Pars plana vitrectomy for diabetic macular oedema: OCT and functional correlations,” Eye, vol. 20, no. 6, pp. 674– 680, 2006.
8-S.D. Pendergast, T. S.Hassan, G. A.Williams et al., “Vitrectomy for diffuse diabetic macular edema associated with a taut premacular posterior hyaloid,” American Journal of Ophthalmology, vol. 130, no. 2, pp. 178–186, 2000.
9- S. P. Shah, M. Patel, D. Thomas, S. Aldington, and D. A. H. Laidlaw, “Factors predicting outcome of vitrectomy for diabetic macular oedema: results of a prospective study,” British Journal of Ophthalmology, vol. 90, no. 1, pp. 33–36, 2006.
10- D. Gaucher, R. Tadayoni, A. Erginay, B. Haouchine, A. Gaudric, and P. Massin, “Optical coherence tomography assessment of the vitreoretinal relationship in diabetic macular edema,” American Journal of Ophthalmology, vol. 139, no. 5, pp. 807–813, 2005.
11-D. Koleva-Georgieva, “Optical coherence tomography findings in diabetic macular edema,” in Diabetic Retinopathy, M. S. Ola, Ed., InTech, Vienna, Austria, 2012.