37 11	Prolonged weaning	P value	
variable	No	Yes	
Age (year)	60.08±12.65	59±12.65	0.82
Gender			
Females	17 (42.5%)	6 (46.15%)	0.82
Males	23 (57.5%)	7 (53.85%)	
Smoking status			
Non-smoker	19 (47.5%)	7 (53.85%)	0.92
Smoker	10 (25%)	3 (23.85%)	
Ex-smoker	11 (27.5%)	3 (23.1%)	
Smoking index			
Mild	1 (9.09%)	0	0.15
Moderate	4 (36.36%)	0	
Heavy	16 (100%)	6 (54.55%)	
History of previous ICU admission	· · · ·		
No			
Yes	33 (82.5%)	9 (69.23%)	0.43
	7 (17.5%)	4 (30.77%)	

Table (1): Relationship between prolonged weaning and demographic data of the studied population

Data are presented as mean ± SD (unless otherwise indicated)ICU: Intensive care unit

Table (1) shows that there was no statistically significant relationship between prolonged weaning and demographic data as regard age (P= 0.82), gender (P= 0.82), smoking (status & index) (P= 0.92& 0.15 respectively) and history of previous ICU admission (P= 0.43).

Table	e (2	:):	Rei	lationship	between	prol	longed	weaning	and	co-morbidities
-------	------	-----	-----	------------	---------	------	--------	---------	-----	----------------

	Prolonge	P value	
Co-morbidities	No	Yes	
Cardiac disease	15 (37.5%)	7 (53.85%)	0.3
DM	13 (32.5%)	7 (53.85%)	0.2
Hypertension	13 (32.5%)	7 (53.85%)	0.2
Neurological disease	7 (17.5%)	5 (38.48%)	0.67
Thyroid disease	3 (7.5%)	0	0.57
Hepatic disease	2 (5%)	0	1.00
Rheumatological disease	2 (5%)	0	1.00
Renal disease	1 (2.5%)	0	1.00

DM: Diabetes mellitus

Table (2) shows that there was no statistically significant relationship between prolonged weaning and comorbidities.

T 11 (2) D 1 (2) 12	1 .	1 1	•	1.1		C	•	C •1
Tahlo (3) · Rolationshi	n hotwoon	nrolongod	waanina	and the	CAUGAG A	trog	niratory	tailuro
LUDIE (J). Relulionshi	D Delween	DIDIDIIgea	weaning a	unu me	cuuses o	1 1001	D I I U I U I V	iuiuie
		F - · · · · · · · · · · · · · · · · · ·				/		,

Cause of respiratory failure	Prolonged	P value	
	No	Yes	
COPD	17 (61.54%)	5 (38.46%)	0.3
Pneumonia	13 (32.5%)	3 (23.08%)	0.52
IPF	4 (10%)	2 (15.38%)	0.63
Overlap syndrome	3 (7.5%)	2 (15.38%)	0.59
Bronchiectasis	2 (5%)	3 (23.08%)	0.09
OH syndrome	2 (5%)	0	0.59
Malignancy	4 (10%)	1 (7.69%)	1.00
Kyphoscoliosis	1 (2.5%)	0	1.00

COPD:Chronic obstructive pulmonary disease IPF:Interstitial pulmonary fibrosis OH syndrome: Obesity hypoventilation syndrome

Table (3) shows that there was no statistically significant relationship between prolonged weaning and the cause of respiratory failure as regard COPD (P=0.3), pneumonia (P=0.52), IPF (P=0.63), overlap syndrome (P=0.59), bronchiectasis (P=0.09), OH syndrome (P=0.59), malignancy (P=1.00) and kyphoscoliosis (P=1.00).

17	Prolong	P value	
variable	No	Yes	
WBCs (/L) 13.7±5.52		16.51±4.37	0.08
Haemoglobin (gm/dL)	11.85±2.76	11.02±1.53	0.31
PLTs(/L)	231.45+94.61	210.31+72.62	0.48
	201110_0 1101	2101012/2002	0110
ALT (IU/L)	49.05±65.56	20.77±10.03	0.0001
AST (IU/L)	67.43±131.33	22.23±8.77	0.0005
Creatinine (mg/dL)	1.28±1.35	1.06±0.36	0.54
Albumin (gm/L)	2.76±0.64	2.37±0.75	0.12
Urea (mg/dI)	26.08+21.81	46 55+21 69	0.001
orea (ing/ull)	20.90-21.01	40.33121.07	0.001
Serum Na + (mmol/L)	138.58±5.48	140.46±6.70	0.38
Serum Mg++(mg/dL)	2.06±0.38	1.43±0.47	<0.0001
Serum K+(mmol/L)	4.18±0.76	3.93±0.78	0.33
Serum Ca ++(mg /dL)	8.48±0.81	6.93±1.49	<0.0001

Table (4): Relationship between prolonged weaning and laboratory investigation

Data are presented as mean \pm SD (unless otherwise indicated)

WBCs: White blood cellsPLTs: PlateletsALT: Alanine transaminaseAST: Aspartate transaminaseNa+:SodiumMg++:MagnesiumK+: PotassiumCa++: CalciumTable (4) shows that there was statistically significant relationship between prolonged weaning and ALT (P=0.0001), AST (P= 0.0005), elevated urea level (P= 0.001), low serum Mg++ level (P < 0.0001) and low serum</td>Ca++level (P < 0.0001). Patients with low serum albumin level were experienced prolonged weaning but statically
not significant (P= 0.12).

Table (5): Relationship between prolonged weaning and arterial blood gases parameters at the beginning of the first weaning trial

	Prolonge	d weaning	P value
Arterial blood gases	No	Yes	
РН	7.43±0.06	7.42±0.11	0.73
PaCO2 (mmHg)	45.23±11.33	53.93±13.16	0.04
PaO2 (mmHg)	76.28±20.16	70.38±14.13	0.41
SaO2%	92.18±5.65	81.31±8.75	<0.0001
HCO3(mEq/l)	34.51±7.35	33.82±6.75	0.76
P/F	191.21±52.25	172.15±37.1	0.23
Shunt (%)	11.67±3.05	11.78±1.67	0.91
(A-a) O2gradient (mmHg)	158.34±46.22	150.66±22.7	0.57

Data are presented as mean \pm SD (unless otherwise indicated)

PaCO2: Partial arterial tension of carbon dioxide PaO2: Partial arterial tension of oxygen SaO2%: Oxygen saturation Table (5) shows the relationship between prolonged weaning and arterial blood gases parameters at the beginning of the first weaning trial: the mean level of PaCO2 was significantly higher in patients with prolonged weaning in comparison to other weaning outcomes (P = 0.04). The mean level of SaO2% was significantly low in patients with prolonged weaning in comparison to other weaning outcomes (P = 0.04).

Table (6): Relationship between prolonged weaning and change of arterial blood gases between the beginning and the end of weaning trial

Blood gagag nonomotors	Pro	P value	
Blood gases parameters	No	Yes	
PH change	0.14±0.12	0.17±0.13	0.44
PaCO2 change	[-15.33] ± 22.73	[-18.69] ± 27.3	1.00
PaO2 change	19.5±28.70	17.85±21.49	0.99
SaO2% change	9.58±13.34	[-1.23] ± 9.64	0.006
НСО3-	3.79±6.07	6.53±5.97	0.18

Data are presented as mean ± SD (unless otherwise indicated)

Table (6)shows the relationship between prolonged weaning and change of arterial blood gases between the beginning and the end of weaning trial; there was a significant relationship between prolonged weaning and deterioration of SaO2% in the form of decrease of mean level of SaO2% (P=0.006).

Table (7): Relationship between prolonged weaning and duration of MV&ICU stay, complications and outcomes

V	Prolong	P value	
variable	No	Yes	
Duration of MV(day)	8.28±5.22	18.38±4.38	0.0001
Duration in ICU(day)	13.58±6.81	22.69±3.17	0.0001
Complications			
No	33 (82.5%)	11 (84.62%)	
VAP	2 (5%)	2 (15.38%)	
CVS	1 (2.5%)	0	0.81
HAP	1 (2.5%)	0	
Hematemesis	1 (2.5%)	0	
Shock	1 (2.5%)	0	
Tracheoesophageal fistula	1 (2.5%)	0	
Death			
Yes	12 (30%)	7 (53.85%)	
No	28 (70%)	6 (46.15%0	0.18

Data are presented as mean \pm SD (unless otherwise indicated)

MV: Mechanical ventilation ICU: Intensive care unit VAP: Ventilator associated pneumonia HAP: CVS: Cerebrovascular stroke

Table (7) shows that the duration of MV and ICU stay were significantly longer in patients with prolonged weaning than other weaning outcomes (P=0.0001 for both).

Variable	Odds ratio (95% confidence interval)	P value
Two or more co-morbidity compared to none or one	5.21 (0.29-93.69)	0.26
WBCs (×10 ³ cells/mcL)	1.05 (0.77-1.45)	0.73
ALT (IU/L)	0.91 (0.81-1.03)	0.13
AST (IU/L)	0.86 (0.72-1.02)	0.1
Mg++ (mg/dL)	0.04 (0.004-0.47)	0.01
Ca++(mg/dL)	0.32 (0.08-1.19)	0.09
Tidal volume (baseline)	1.02 (0.98-1.06)	0.35
PaCO2 (first weaning trial)	1.01 (0.90-1.14)	0.8
SaO2% (first weaning trial)	1.03 (0.67-1.57)	0.89
SaO2% change	0.68 (0.54-1.04)	0.03
Urea (mg/dL)	0.99 (0.96-1.04)	0.91
Albumin (gm/L)	0.37 (0.04-3.44)	0.38
ICU stay (day)	1.09 (0.71-1.69)	0.68
MV duration (day)	1.32 (0.79-2.21)	0.28
RSBI	1.10 (0.85-1.42)	0.46
Minute ventilation (L/min)	0.67 (0.20-2.21)	0.73

Table (8): Multivariate analysis of factors predicting prolonged weaning

Table (8) shows; the multivariate analysis demonstrates that serum Mg++ level (P=0.03) and SaO2% changebetween the beginning and the end of weaning trial (P=0.02) were a significant predictors of prolonged weaning.

Table (9): Optimum diagnostic cut off value, AUC (parentheses 95% CI), sensitivity, specificity, and positive (PPV) and negative predictive values (percentages) of ventilator and blood gases parameters at baseline for predicting prolonged weaning

Variable	Cutoff	AUC (95% CI)	Sensitivity	Specificity	PPV	NPV	Accuracy	P value
Serum Mg++(mg/dL)	≤1.5	0.83 (0.70-0.92)	61.5	92.5	72.7	88.1	77.00	<0.0001
Tidal volume(mL)	≤450	0.69 (0.55-0.81)	76.9	55.0	35.7	88	65.95	0.02
РН	≤7.1	0.57 (0.42-0.70)	30.8	95.0	66.7	80.9	62.90	0.54
PaCO2(mmHg)	≥52	0.57 (0.43-0.71)	61.5	75.0	44.4	85.7	68.25	0.55
PaO2(mmHg)	≤40	0.59 (0.44-0.72)	38.5	87.5	50.0	81.4	63.00	0.41
SaO2%	≤78	0.51 (0.37-0.65)	38.5	75.0	33.3	78.9	56.75	0.93
HCO3(mEq/L)	≤31	0.64 (0.49-0.76)	84.6	45.0	33.3	90.0	64.80	0.09

Table (9) shows that optimum diagnostic cut off value of baseline serum Mg++ level (≤ 1.5 mg/dL) was statically significant for predicting prolonged weaning (P < 0.0001). Optimum diagnostic cut off value of baseline tidal volume (≤ 450 mL) was statically significant for predicting prolonged weaning (P < 0.02).

Table (10): Optimum diagnostic cut off value, AUC (parentheses 95% CI), sensitivity, specificity, and positive (PPV) and negative predictive values (percentages) of ventilator and blood gases parameters at the beginning of the first weaning trial for predicting prolonged weaning

Variable	Cutoff	AUC (95% CI)	Sensitivity	Specificity	PPV	NPV	Accuracy	P value
Tidal volume(mL)	≤480	0.61 (0.47- 0.75)	69.2	52.5	32.1	0.84	60.85	0.18
Respiratory rate(cycle/min)	>19	0.64 (0.49- 0.77)	69.2	67.5	40.9	87.1	68.35	0.1
РН	>7.44	0.53 (0.39- 0.67)	46.5	72.5	35.3	80.6	59.50	0.79
PaCO2(mmHg)	≥49	0.69 (0.55- 0.81)	69.2	62.5	37.5	86.2	65.85	0.02
PaO2(mmHg)	≤94	0.58 (0.43- 0.71)	100	17.5	28.3	100	58.75	0.39
SaO2%	≤91	0.88 (0.77- 0.96)	100	60	44.8	100	80.00	<0.0001
HCO3(mEq/L)	≤31	0.52 (0.38- 0.66)	46.2	70.0	33.3	80.0	58.10	0.86
P/F	≤151	0.62 (0.47- 0.75)	38.5	85.0	45.5	81.0	61.75	0.19
Shunt	>10.3	0.59 (0.45- 0.72)	92.3	37.5	32.4	93.7	64.90	0.27
(A-a) gradient	>136	0.51 (0.37- 0.65)	92.3	40	33.3	94.1	66.15	0.87

Table (10) shows that optimum diagnostic cut off value of PaCO2 at first weaning trial (\geq 49mmHg) was statically significant for predicting prolonged weaning (P <0.02). Optimum diagnostic cut off value of SaO2% at first weaning trial (\leq 91%) was statically significant for predicting prolonged weaning (P <0.001).

Table (11): Optimum diagnostic cut off value, AUC (parentheses 95% CI), sensitivity, specificity, and positive (PPV) and negative predictive values (percentages) of changes in ventilator and blood gases parameters between the beginning and the end of weaning trial for predicting prolonged weaning

Variable	Cutoff	AUC (95% CI)	Sensitivi ty	Specificity	PPV	NPV	Accurac y	P value
PH change	>0.23	0.57 (0.43-0.71)	38.5	85	45.5	81.0	61.75	0.48
PaCO2 change	>[-46]	0.50 (0.36-0.64)	69.2	10.0	20	50	39.60	1.00
PaO2 change	≤42	0.50 (0.36-0.64)	100	20	28.9	100	60.00	0.99
SaO2% change	≥5	0.76 (0.62-0.86)	84.6	65.0	44.0	92.9	74.80	0.003
HCO3 change	>6	0.62 (0.48-0.75)	61.5	67.5	38.1	84.4	64.50	0.19

Table (11) shows that optimum diagnostic cut off value of SaO2% change in the form of decrease between baseline and first weaning trial (\leq 5) was statically significant for predicting prolonged weaning (P < 0.003).