Ultrasound-guided transversus abdominis plane block for postoperative analgesia after varicocelectomy operations

Wael Alham Mahmoud, Ahmed Hamody Hassan, Khaled abdelfattah Mohamed, Ghada Abdel Gaber Rizk*

*Lecturer of anaesthesia and intensive care, Sohag University.

Abstract
To assess the efficacy of transversus abdominis plane (TAP) block as a postoperative analgesic effectiveness. Thirty-three consecutive male patients undergoing retroperitoneal varicocelectomy repair (Palomo technique) were enrolled in this study. Patients were randomly allocated to undergo ultrasound-guided TAP block anesthesia (case group), or conventional spinal anesthesia (control group), rescue analgesia need, nausea, and satisfaction at different time-points (6, 12, and 24 h after surgery). The post-operative evaluation, patients enrolled in the case group expressed significantly less pain on VAS score at rest and on movement at 6 ($p = 0.001$ and $p = 0.001$) and at 12 h ($p = 0.004$ and $p = 0.01$). Moreover, the need of rescue analgesia resulted significantly higher in the control group ($p = 0.03$). This is the first study showing that TAP block could be employed as an effective and feasible anesthesia method for the retroperitoneal varicocelectomy. Moreover, our results demonstrate that this method is more effective than spinal anesthesia in the pain control after varicocele repair.

Introduction
Varicocelectomy is one of the most frequently performed surgical procedures. Several techniques have been used for the surgical ligation of varicocele, including retroperitoneal, inguinal, and scrotal open techniques, microsurgical inguinal, and subinguinal varicocele ligation, laparoscopic approaches, and radiographic embolization. The open retroperitoneal high ligation of the internal spermatic vein (Palomo technique) currently represents one of these validated surgery methods for the varicocele repair [1]. The transversus abdominis plane (TAP) block is a recently regional anesthesia technique that provides analgesia to the parietal peritoneum as well as to the skin and muscles of the anterior abdominal wall [2, 3, 4]. Despite a relatively low risk of complications and a high success rate using modern techniques, TAP blocks remain overwhelmingly underutilized [5].

The aim of this randomized and controlled study was to determine the feasibility and the efficacy of TAP block for post-operative analgesic effectiveness after varicocelectomy operations.

Methods
After local ethical committee approval and written informed consent signature, all consecutive adult male patients undergoing elective varicocelectomy repair were screened for the enrollment in our study between June 2016 and March 2017. Exclusion criteria were: inability to consent to the study, age ≤ 18 years, BMI ≥ 40 kg m$^2$, contra-indication to local anesthetic (LA) agents. Patients were randomly allocated by sealed envelopes to undergo ultrasound-guided TAP block anesthesia (case group), or conventional spinal anesthesia (control group). All surgical procedures were performed using the Palomo technique...
Participants were asked to rate the severity of nausea on a four-point scale (none, mild, moderate, and severe) during the first 24 h after surgery.

**TAP block (Case) group:**
After receiving the standard general anaesthesia they received a Single shot TAP block via a linear array transducer probe (6–13 MHz) in the multibeam mode, connected to a portable ultrasound unit levobupivacaine 0.5 % (1.5 mg/kg) was injected with intermittent aspiration and the correct placement of the needle was confirmed by expansion of the LA solution as a dark shadow between aponeurosis of the internal oblique (which moved anteriorly) and the transversus abdominis muscles pushing the muscle deeper.

**Traditional spinal anaesthesia (control) group:**
Subarachnoid puncture was performed with a 25-gauge Whitacre needle, with patients in the sitting position. A midline approach at the L2–3 or L3–4 interspace was used. Patients received 2.4 or 2.6 ml of 0.5 % hyperbaric bupivacaine depending on their height (2.4 ml for those <152 cm and 2.6 ml for those >152 cm).

**Statistical analysis**
Statistical analysis was performed with SPSS 15.0. The Yates corrected Chi square test was used as a means of evaluating differences in categorical variables, and the independent t test was used for continuous variables. To adjust for co-variates and to make predictions, linear and logistic regression models were used. Statistical significance was accepted when the p value was <0.05.

**Results**
Of the 47 subjects screened for the enrollment in this study, 14 patients were excluded because of the exclusion criteria. In particular, three were ≤18 years old, two showed a BMI > 40 kg/m², seven denied their consent to the study, two referred contra-indication to LA agents.
Among the 33 consecutive patients enrolled in our study, 16 underwent varicocele repair under ultrasound-guided TAP block anesthesia (case group), and 17 under spinal anaesthesia (control group). Baseline clinical and demographic characteristic were similar between the two groups. Moreover, surgical results did not significantly differ between case and control patients (Table 1). The TAP block procedure added to the surgery 15.3 ± 4.2 min.

### Table 1: Baseline demographic characteristics and outcome measurements

<table>
<thead>
<tr>
<th></th>
<th>Tap block</th>
<th>Spinal</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>30.5 ± 6.3</td>
<td>30.4 ± 6.3</td>
<td>0.9</td>
</tr>
<tr>
<td>BMI (units)</td>
<td>24.8 ± 3.9</td>
<td>24.7 ± 4.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Operative time (min)</td>
<td>17.3 ± 5.8</td>
<td>17.8 ± 5.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Adequate anaesthesia (pts)</td>
<td>15 (91 %)</td>
<td>17 (100 %)</td>
<td>0.1</td>
</tr>
<tr>
<td>Rescue analgesia use (pts)</td>
<td>6 (27.2 %)</td>
<td>14 (77.2 %)</td>
<td>0.03</td>
</tr>
<tr>
<td>First time to require ketorolac(min)</td>
<td>277±33</td>
<td>138±47</td>
<td>0.02</td>
</tr>
<tr>
<td>Total ketorolac consumption(mg) /24 hrs</td>
<td>39±12.1</td>
<td>58 ±9.6</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Postoperative VAS score at rest (rVAS) and VAS score on movement (mVAS) are reported in Fig. 1. In detail, patients enrolled in the TAP block group expressed significantly less pain on rVAS at 6 h (p = 0.001) and at 12 h (p = 0.004) as compared with control subjects. On the contrary, no significant differences were found between the two groups for rVAS scores 24 h after surgery (p = 0.5). Accordingly, as compared with controls, patients from TAP block group reported significantly less pain on mVAS at 6 h (p = 0.001) and 12 h (p = 0.01) whereas no significant differences were found between the two groups for mVAS scores at 24 h (p = 0.5) after surgery

**Fig. 1** Mean pain intensity scores at rest and on movement (mVAS) in case and control patients in the postoperative period.

During the first postoperative day, the need of rescue analgesia for abdominal pain resulted significantly higher in the control group as compared with the case group [13/17 (77.3 %) vs. 4/16 (27.3 %), p = 0.03]. In case of rescue analgesia use only a single dose of ketorolac (15 mg) was administered. After adjusting for the other variables (age, BMI, operative time), the TAP block anesthesia was found to predict
lower values of post-operative rVAS at 6 h ($\beta = -0.695, p < 0.001$) and at 12 h ($\beta = -0.468, p < 0.001$) as compared with spinal anesthesia. Similar results was found for mVAS at 6 h ($\beta = -0.673, p < 0.001$) and at 12 h ($\beta = -0.390, p = 0.005$). Accordingly, in a logistic regression analysis, the TAP block anesthesia was associated with a significantly reduced need of rescue post-operative analgesia (OR 0.141, 95 % CI 0.028–0.714, $p = 0.018$). None of the subjects (case and controls) needed drugs other than ketorolac (30 mg) for analgesia. On the contrary, no patients had analgesic requirement during the first week after surgery. No surgical and anaesthetic complications were observed in all the procedures, although a trend towards less nausea ($p = 0.3$) was found in the case group as compared with the controls (Table 2). After all, as to the patients satisfaction rate after surgery, in this study, we achieved good results among our patients in either groups ($p = 0.7$) and no one referred bad this period (Table 2).

### Table 2: Nausea and vomiting rates

<table>
<thead>
<tr>
<th>Nausea (pts)</th>
<th>Tap block</th>
<th>Spinal</th>
<th>$p$ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>0</td>
<td>0</td>
<td>0.3*</td>
</tr>
<tr>
<td>Moderate</td>
<td>3 (18.1 %)</td>
<td>4 (22.7 %)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>2 (9 %)</td>
<td>3 (18.1 %)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>11 (72.7 %)</td>
<td>10 (59 %)</td>
<td></td>
</tr>
</tbody>
</table>

### Discussion

This study aimed to know the efficacy and safety of the TAP block for postoperative analgesia after varicocelectomy operations. The TAP is an intermuscular plane between the internal oblique and transversus abdominis muscles. The terminal branches of the lower thoracic and first lumbar nerves course through the lateral abdominal wall within this plane [6]. Injection of local anesthetic in the TAP may possibly provide unilateral analgesia of the anterior abdominal wall (skin, muscles, and parietal peritoneum) from the T7 to L1 dermatomes [7, 8].

The TAP block was first described as a landmark-guided technique involving needle insertion at the triangle of Petit and the elicitation of two tactile fascial “pops” to indicate entry into the transversus abdominis muscles [3]. More recently, ultrasounds has been used successfully to guide needle insertion [10, 11, 12], and it may help prevent complications related to inadvertent visceral perforation [13]. The muscle layers and peritoneum are readily visualized using a linear transducer, even in moderately obese subjects [10].

Transversus abdominis plane block has been described as an effective component of multimodal postoperative analgesia for a wide variety of abdominal procedures including large bowel resection, open/laparoscopic appendectomy, cesarean section, total abdominal hysterectomy, laparoscopic cholecystectomy, open prostatectomy, renal transplant surgery, abdominoplasty with/without flank liposuction, and iliac crest bone graft [1]. Most reports demonstrate the effectiveness of TAP block by highlighting a reduced postoperative opioid related requirement, lower pain
scores, and/or reduction in opioid-related side effects [14]. Moreover, the efficacy of the TAP block in the induction of an effective analgesia during the first 24 h after surgery has been reported [15, 16, 17].

There are a few randomized controlled trials comparing TAP block and spinal analgesia for analgesia after varicocelectomy operations. At present, TAP block is recommended in patients undergoing abdominal surgery when spinal or epidural blockade is contraindicated or not available. TAP block is considered a good analgesic procedure for pain control after operations that involve the abdominal wall like varicocelectomy and hernia repair operations. Our results demonstrate that this analgesia method is more effective than spinal anesthesia in the pain management after varicocele repair because patients who underwent TAP block anesthesia expressed significantly less pain on VAS score at rest and on movement, and a less analgesic requirements considering first time to require ketorolac and total dose of ketorolac consumption per 24 hours. As to the analgesic potential of TAP block, in a similar manner with all the other surgical procedures, also in the varicocelectomy the relative small sample size make it unlikely to define conclusive results. Further studies are needed to address the relevant issue of the TAP block use in the anesthetic and analgesic management of varicocele surgery.

References


