

SMJ- Sohag Medical Journal, Vol. 29 No (3) 2025

Print ISSN1687-8353

Online ISSN2682-4159

Review Article

Detection of Clindamycin Resistance Antibiotic Genes among Staphylococcus Isolates by Using Real Time PCR

Laila Mohamed Yousef ¹, Ashraf Khodeary², Sherif Abdel Aziz Sayed², Al Zahra Nasser Mahmoud³

*Department clinical pathology Sohag, Faculty of medicine, Sohag University

Abstract

Background: S. aureus is a prevalent person pathogen, accountable for a broad range of community- and hospital-acquired illnesses. The rise of methicillin-resistant Staphylococcus aureus (MRSA) and resistance to macrolide-lincosamide-streptogramin B (MLSB) medicines, especially clindamycin, presents significant therapeutic difficulties. This study aimed to determine the occurrence of constitutive and inducible clindamycin resistance among S. aureus clinical isolates utilizing real-time PCR for observation of resistance genes. Among the isolates, inducible clindamycin resistance (iMLSB) has been observed in 23.4%, with a markedly higher prevalence in MRSA (76.4%) compared to MSSA. Constitutive resistance (cMLSB) was lower, at 7.1% in MRSA and 5.8% in MSSA. Molecular analysis revealed the presence of ermA (15.62%), ermB (3.12%), and ermC (18.75%) genes, with higher prevalence of these genes in inducible clindamycin-resistant MRSA isolates. These results highlight the increasing burden of MLSB resistance and emphasize the necessity of routine D-testing and molecular surveillance to guide effective treatment and prevent therapeutic failure.

Conclusion: This study demonstrates a significant occurrence of inducible clindamycin resistance among Staphylococcus aureus isolates, particularly MRSA, with a strong association to erm genes. The high rate of iMLSB resistance underscores the risk of treatment failure if clindamycin is prescribed without prior D-testing. Moreover, the molecular detection of erm genes confirms their critical role in mediating resistance and indicates the importance of integrating genetic surveillance into diagnostic protocols. Strengthening antimicrobial stewardship, promoting rational antibiotic use, and applying reliable diagnostic methods are essential strategies to limit the spread of resistant S. aureus strains and improve patient outcomes.

Key words: Antibiotic Genes, Clindamycin Resistance, Staphylococcus Isolates

Published: September 30, 2025

Corresponding Author: Zahra Nasser Mahmoud. E-mail: alzahraa.nasser@med.sohag.edu.eg

Citation: Zahra Nasser Mahmoud. . Detection of Clindamycin Resistance Antibiotic Genes among Staphylococcus Isolates by Using Real Time PCR

SMJ,2025 Vol. 29 No (3) 2025 212 - 219

Copyright: Zahra Nasser Mahmoud et al., Instant open access to its content on principle Making research freely available to the public supports greater global exchange of research knowledge. Users have the right to read, download, copy, distribute, print or share the link Full texts

Introduction:

Staphylococcus is among the most prevalent pathogenic bacteria responsible for human disorders. Staphylococcus is a Gram (+ve) bacterium that induces several infectious illnesses in humans, including bacteremia, skin infections, pneumonia, endocarditis, and food poisoning. Nevertheless, the rising utilization of MLSB antibiotics correlates with a rise in the prevalence of Staphylococcal bacteria developing resistance to MLSB antibiotics .(1)

Detection of MRSA isolates was conducted utilizing the mecA mobile genetic element and polymerase chain reaction (PCR). This approach is categorized by a sensitivity of 93.8% to 100% and a specificity of 98.6% to 100%. The resistance mechanism of macrolides in various bacteria, particularly Gram-positive cocci, is documented by Erm genes and can occur through two mechanisms: an active efflux mechanism and Erm genes that encode enzymes conferring inducible resistance to macrolide agents via methylation of the 23S Rrna⁽²⁾ Clindamycin, a member of the MLSB class of antibiotics, is the favored management for MRSA infections owing to its superior pharmacokinetics .(1) Erythromycin induces clindamycin resistance by promoting the creation of erythromycin ribosome methylase (erm), which promotes the expression of clindamycin resistance. Isolates exhibiting constitutive clindam-ycin resistance, characterized by the continuous production of methylase, demonstrate resistance to both erythrom-yein and clindamyein as a result of (erm) gene expression. (3)

This research aimed to ascertain the incidence of both constitutive and inducible clindamycin resistance in clinical isolates of Staphylococcus. This will assist physicians in preventing the overuse of clindamycin and enhance therapeutic results for cases.

Staphylococci

Staphylococcus is a common bacterial pathogen found in the environment and as part of the normal human flora, particularly on the skin and nasal mucosa. While usually harmless on intact skin, Staphylococcus aureus can cause serious infections if it enters the bloodstream or internal tissues. It is responsible for a wide range of community- and hospital-acquired infections, with treatment compli-

cated by the rise of multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus. Transmission occurs mainly through direct contact, though other routes may also contribute .(4)

Etiology

Staphylococcus are Gram (+ve), cocci-shaped bacteria that form grape-like clusters and grow in up to 10% salt, with S. aureus producing golden colonies; they are facultative, growing aerobically or anaerobically between 18 and 40°C. Identification relies on biochemical tests, including catalase positivity, novobiocin sensitivity (to distinguish from S. saprophyticus), coagulase positivity (for S. aureus), and mannitol fermentation positivity (to distinguish from S. epidermidis). Methicillin-resistant strains (MRSA) carry the mec gene within the SCCmec region, encoding penicillin-binding protein 2a (PBP-2a), which has low affinity for beta-lactams, allowing continued cell antibiotic wall synthesis despite exposure. Consequently, MRSA is resistant to nafcillin, oxacillin, methicillin, and cephalosporins .(5)

Epidemiology

Staphylococcus aureus, involving MRSA, colonizes the mucous membranes and skin, with people serving as the main reservoir. Around 50% of adults are colonized, and 15% persistently carry *S. aureus* in the anterior nares. Higher colonization rates (up to 80%) occur among healthcare workers, IV drug users, diabetics, hospitalized individuals, and immunocompromised individuals. Transmission is mainly through direct contact or fomites .(6)

Features of S. aureus

Belonging to class Bacilli and family Micrococcaceae, S. aureus can be differentiated from other staphylococci by its golden colonies and positive outcomes for coagulase, deoxyribonuclease, and sugar fermentation tests .(7)

Cell Wall

The cell wall consists of $\sim 50\%$ peptidoglycan made of NAM and NAG linked via β -1,4 bonds, crosslinked by pentaglycine bridges. Ribitol teichoic acids and lipoteichoic acids are key components, with peptidoglycan also showing endotoxin-like

activity that triggers cytokine release, platelet aggregation, complement activation, and macrophage stimulation (8)

Capsules

Most staphylococcal species produce microcappsules, with 11 serotypes identified. Types 5 and 8 are mainly responsible for human infection, with type 5 frequently isolated from methicillin-resistant Staphylococcus aureus strains. (9)

Surface Proteins

S. aureus expresses 24 cell wall-anchored (CWA) proteins, more than other staphylococci. Their expression depends on growth conditions, often induced in iron-deficient environments. CWA proteins are grouped into MSCRAMMs, the G5–E repeat family, 3-helical bundle proteins, and NEAT motif proteins, with MSCRAMMs playing a central role in host adhesion .(10)

Genetic Materials

The genome consists of a circular chromosome (~2800 base pairs), transposons, plasmids, and prophages. Resistance genes are located on both chromosomal and extrachromosomal elements, enabling horizontal gene transfer with other Grampositive species .(11)

Toxins

S. aureus produces diverse toxins: cytotoxins (e.g., α -toxin) that form pores and cause inflammation, superantigens that bind MHC-II and induce cytokine release, and enterotoxins/exfoliative toxins that cause toxic shock syndrome, food poisoning, and skin damage. (11)

Enzymes and Other Components

Enzymes such as hyaluronidase, lipase, and protease degrade host tissues and aid spread. β -lactamase confers penicillin resistance, while coagulase promotes fibrin clotting, enhancing virulence (12)

Pathogenesis of S. aureus

S. aureus expresses virulence factors enabling survival and severe infections⁽¹³⁾

Colonization

It colonizes skin and mucosa (nasal chamber, axillae, vagina, throat, groin, and GI tract). About 214

20% are persistent nasal carriers and 30% transiently colonized. Adhesion occurs via MSCRAMMs and other components, while host defenses (IgA, lysozyme, lactoferrin, and antimicrobial peptides) counter colonization. Higher colonization occurs in diabetics, HIV patients, and children (14)

Pathogenesis

Infection usually follows wound exposure. Virulence genes are upregulated upon host contact, triggering inflammation and immune cell recruitment. MSCRAMMs enable adhesion to host components (fibrinogen, collagen, and fibronectin), which is critical in device-related, bone, and vascular infections. S. aureus forms biofilms and small-colony variants (SCVs) that evade immunity and antibiotics, contributing to persistent infections. It evades host defenses by inhibiting neutrophil chemotaxis, secreting leukocyte toxins, resisting opsonization, and modifying NAM–NAG bonds to resist lysozyme cleavage. (15)

Pathogenesis of HA-MRSA

Resistance in *S. aureus* arises from the *mecA* gene, which encodes PBP2A with low affinity for beta-lactams. HA-MRSA strains carry SCCmec elements encoding multiple resistance genes. These strains may cause asymptomatic colonization and thrive in antibiotic-rich environments. Compared with MSSA, HA-MRSA shows longer generation times, increased susceptibility to neutrophils, and lower pathogenicity in mice .(16)

Pathogenesis of CA-MRSA

Initially noted in immunocompromised patients in the late 1990s, CA-MRSA appeared as a distinct strain causing severe infections, including fatal pediatric pneumonia in 1997. Unlike HA-MRSA, CA-MRSA carries SCCmec type IV encoding Panton–Valentine leukocidin (PVL), which enhances virulence. (16)

Clinical Manifestations

S. aureus bacteremia (SAB), whether MSSA or MRSA, commonly arises from vascular catheter infections, pleuropulmonary infections, SSTIs, osteoarticular infections, and infective endocarditis (IE), though ~25% of patients lack a clear focus. Trends shift with infection control, as reductions in catheter-related cases contrast with increases in

SSTI-associated SAB, particularly with USA300 CA-MRSA and in indigenous populations. SAB is categorized as "complicated" or "uncomplicated," influencing diagnosis, treatment duration, and prognosis. Predictors of complicated SAB include community acquisition, persistent fever at seventytwo hours, positive monitoring cultures at fortyeight to ninety-six hours, and systemic skin findings. Mortality varies by infection source: highest in bacteremia without focus (twenty-two to forty-eight percent), IE (twenty-five to sixty percent), and pulmonary infections (thirty-nine to sixty-seven percent), and lower in catheter-related bacteremia (seven to twenty-one percent), SSTIs (fifteen to seventeen percent), and UTIs (ten percent) .(17)

Antibiotic-Resistant Staphylococcus aureus Mechanisms of antibiotic-resistant MRSA

The introduction of penicillin by Alexander Fleming in the 1940s effectively controlled S. aureus infections, but widespread use led to resistance in the 1950s through penicillinase production, which hydrolyzes the β-lactam ring .(7) To overcome this, methicillin, a semi-synthetic penicillin resistant to β-lactamase, was developed in 1959, though it has been later replaced by more stable derivatives such as flucloxacillin, oxacillin, and dicloxacillin. Despite these advances, MRSA has been 1st stated in 1961 by Jevons, and the term "MRSA" continues to be used. β-lactam antibiotics normally target penicillin-binding protein a (PBPa), a bi-functional transglycosylase-transpeptidase that facilitates peptidoglycan synthesis and crosslinking. In MRSA, structural modifications in PBP2a prevent β-lactam binding, leading instead to the formation of a penicilloyl-O-serine intermediate that confers resistance. (11)

The resistance mechanism is mediated via the mecA gene, which encodes PBP2a. Integrated into the chromosomal SCCmec element of methicillinsensitive S. aureus, mecA spreads through horizontal gene transfer and confers broad resistance to most β -lactam antibiotics, except ceftobiprole and ceftaroline. SCCmec contains 2 major components: the mec gene complex (including mecA and associated regulators) and the ccr gene complex encoding recombinases (ccrA, ccrB, ccrC) that mediate integration and excision of 215

SCCmec into the chromosome. Based on gene composition and recombinase allotypes, SCCmec has been categorized into eight types and various subtypes by the International Working Group on the Staphylococcal Cassette Chromosome elements⁽⁷⁾

Vancomycin-resistant S. aureus Vancomycin Resistance Development

Vancomycin, a glycopeptide antibiotic presented in 1958, became the first-line treatment for MRSA infections. Resistance was first seen in Enterococci in the 1980s, followed by reduced susceptibility in S. aureus to teicoplanin in Europe. The first VRSA was reported in 2002 in Michigan, USA, with 52 isolates carrying van genes detected globally the same year .(18) According to CLSI, S. aureus is classified as VSSA (MIC below or equal to two micrograms/milliliter), VISA (MIC four to eight micrograms/milliliter), and VRSA (MIC above or equal to sixteen micrograms/milliliter).

VISA

VISA has been 1st stated in Japan in 1997 with an MIC of 8 µg/ml. It usually develops from heterogeneous VISA (hVISA), which appear vancomycin-susceptible but harbor resistant subpopulations. VISA phenotypes are categorized by increased cell wall thickness, diminished cross-linking, surface peptidoglycan altered proteins, decreased autolysis, and dysfunction of the agr system. Genes such as WalKR, GraSR, and VraSR are implicated, with GraRS mutations affecting capsule biosynthesis, teichoic acid modification, and global regulators like rot and agr

VRSA

VRSA resistance is mediated by van gene clusters, first identified in bacteria like Enterococcus, Clostridium difficile, Actinomycetes, and gut flora species. Eleven van clusters have been described: vanA, vanF, vanB, vanD, vanI, vanM (high-level resistance, MIC above 256 micrograms/milliliter), and vanC, vanE, vanL, vanG, and vanN (low-level resistance, MIC 6–8 micrograms/milliliter). The vanA operon, carried on transposon Tn1546, encodes proteins VanS/VanR (two-component regulation) and VanH/VanA/VanX, which alter cell wall precursors from D-Ala-D-Ala to D-Ala-D-Lac, preventing vancomycin binding. Enterococci are the

main reservoir, transferring resistance via conjugative plasmids (Inc18) to S. aureus (19)

Clindamycin

Clindamycin is FDA-approved for the treatment of septicemia, bone, intra-abdominal, gynecological, joint, respiratory, and skin infections, as well as for streptococcal pharyngitis, bacterial vaginosis, acne vulgaris, and severe pelvic inflammatory disease. The IDSA supports intravenous clindamycin for inpatient management of community-acquired and aspiration pneumonia; however, it is not a first-line option. It is widely used in prophylaxis: dentists for endocarditis, surgeons and anesthesiologists per ASHP and IDSA guidelines in operating rooms, and gynecologists in combination regimens endometritis. It also serves as an alternative to metronidazole for Gardnerella vaginosis. Beyond this, clindamycin is effective in babesiosis, malaria, anthrax, and uncomplicated skin and soft tissue infections, particularly against MRSA, making it a cost-effective and accessible outpatient treatment option .(20)

Mechanism of Action

Clindamycin is able to block protein synthesis by reversibly binding to the 50S ribosomal subunit. This prevents the creation of peptide bonds. Clindamycin can either be bacteriostatic or bactericidal, depending on the organism, the infection site, and the quantity of the medicine. Clindamycin palmitate must undergo hydrolysis in the gastrointestinal tract prior to absorption; it thereafter distributes extensively but exhibits limited penetration of the meninges, rendering it ineffective for central nervous system infections, with the majority remaining protein-bound in circulation. Metabolized mainly in the liver by CYP3A5 and CYP3A4 into N-desmethyl clindamycin and clindamycin sulfoxide, it reaches peak levels within 60 minutes orally and one to three hours intramuscularly, with a half-life of ~3 hours in adults and ~2.5 hours in kids, and is excreted in urine (major) and inactive metabolites and feces (minor) as active (21)

Pharmacodynamics

Clindamycin acts bacteriostatically by inhibiting microbial protein synthesis, but due to its half-life and short Tmax, it requires dosing every 6 hours to maintain effective levels. A major risk is *Clostridium difficile*-associated diarrhea, which can range from mild to fatal and may occur as much as 2 months following therapy, limiting clindamycin use to serious infections when safer alternatives are unsuitable. It is active vs. gram (+ve) aerobes and both gram (+ve) and (-ve) anaerobes, though resistance may develop through 23S rRNA base modification, with complete cross-resistance to lincomycin and possible cross-resistance with macrolides due to overlapping binding sites. Given regional variations in susceptibility, local antibiograms should be consulted before use (22)

Absorption

Clindamycin has nearly complete oral bioavailability (\sim 90%), with a mean Cmax of 2.50 micrograms/milliliter at 0.75 hours and an AUC of \sim 11 μ g•hr/mL after a 300 mg oral dose. Systemic exposure is much lower with vaginal formulations, being 40–50 times lower with suppositories and only 0.1% of parenteral levels with vaginal cream $^{.(23)}$

Volume of distribution

Clindamycin is extensively disseminated throughout the body, involving bone, but doesn't penetrate cerebral fluid. The volume of distribution was estimated to range from forty-three to seventy-four liters. (23)

Protein binding

The protein binding of clindamycin is concentration-dependent, varying from sixty percent to ninety-four percent. It is mostly linked to α -1-acid glycoprotein in the serum. (23)

Metabolism

Clindamycin is metabolized in the liver, predominantly by CYP3A4 and, to a lesser degree, by CYP3A5.2 inactive metabolites were identified: a clindamycin sulfoxide oxidative metabolite and an N-desmethylclindamycin N-demethylated metabolite. (23)

Route of elimination

Approximately ten percent of clindamycin's bioactivity is eliminated by urine and 3.6% via feces, while the remainder is excreted as inactive metabolites .(22)

Half-life

The removal of The half-life of clindamycin is approximately three hours in adults and 2.5 hours in kids. The half-life is extended to around four hours in the elderly. (22)

Clearance

The plasma clearance of clindamycin is predicted to be between 12.3 and 17.4 L/h and is diminished in cases with cirrhosis and modified in those with anemia. (24)

Detection of Clindamycin Resistance Antibiotic Genes among Staphylococcus

Clindamycin resistance arises through several mechanisms, including target site modification, drug inactivation, and efflux, mediated by both plasmids and chromosomal mutations. Crossresistance with lincomycin is complete, and erythromycin-resistant bacteria may rapidly acquire clindamycin resistance. Resistance has been reported in S. aureus (including inducible forms during treatment), S. pneumoniae, group A and B C. Streptococcus, diphtheriae, B. fragilis, Peptostreptococcus spp., and Cutibacterium acnes. Plasmid-mediated resistance via ribosomal methylation confers resistance to macrolides, while adenylation by nucleotidyltransferase, uncommon, reduces clindamycin activity in Gram-negative staphylococci. organisms like Enterobacteriaceae, Pseudomonas. Acinetobacter are intrinsically resistant due to poor permeability. Resistance rates in B. fragilis have increased in the U.S. from 3% (1987) to 26% (1997–2004), with some centers reporting up to 44%. Because resistance patterns vary geographically, local susceptibility data are essential, and susceptibility testing may be warranted in severe, recurrent, or refractory infections. C. difficile is usually resistant, while C. perfringens remains mostly susceptible. (25)

Detection of Clindamycin Resistance Antibiotic Genes among Staphylococcus

Staphylococcus is a Gram (+ve) bacterium and one of the most frequent human pathogens, causing infections like bacteremia, endocarditis, skin infections, pneumonia, and food poisoning. The widespread use of MLSB antibiotics has led to a 217

growth in resistant Staphylococcal strains. Detection of MRSA is mainly performed by identifying the mecA gene via polymerase chain reaction (PCR), which demonstrates high sensitivity (93.8–100%) and specificity (98.6–100%). (26)

Resistance to MLSB antibiotics is mediated by various mechanisms. The erm genes encode rRNA methylases that methylate the 23S rRNA of the 50S ribosomal subunit. conferring inducible constitutive resistance to lincosamides, macrolides, streptogramin В. Additional mechanisms include active efflux pumps encoded by the msrA gene, leading to the MS phenotype. Inducible (iMLSB) MLSB strains clindamycin-susceptible in vitro but may develop resistance through resulting treatment. Detection management failure. of **iMLSB** phenotypes requires the "D-test," as standard susceptibility methods fail to identify them. Several risk factors contribute to resistance development, including inappropriate antibiotic use, long hospital stays, chronic illnesses, prior catheterization, and close contact with infected patients. (27)

Prevalence of Clindamycin Resistance of Staphylococcus aureus

The overall magnitude of inducible clindamycin resistance among S. aureus isolates in this research was 25.7% (17/66), with a higher frequency in MSSA (26.9%) compared to MRSA (21.4%), aligning with findings from Nepal (21.1%). These rates were higher than those reported in Iran (9.3% and 10.4%), Libya (6.3%), Brazil (10.3%), and India (15.4%). However, clindamycin resistance among MRSA (17.6%) was lower compared with reports from Nepal (27.9%), Tanzania (61%), and India (36%). Factors associated with higher frequencies of inducible resistance included male gender, younger age (11–20), single marital status, larger family size, unemployment, urban residency, and clinical risk factors such as recent illness. surgery, wound infection, hospital admission, and chronic diseases. (28)

PCR for Detection of Clindamycin Resistance Antibiotic Genes among Staphylococcus

Correct identification and reporting of S. aureus isolates is essential in clinical practice, particularly to differentiate true clindamycin susceptibility in

erythromycin-resistant isolates utilizing the simple D-test, which prevents inappropriate clindamycin therapy. In this research, the occurrence of iMLSB was 23.4%, consistent with global reports showing variability from 3.3% to 43%. Notably, iMLSB resistance in MRSA was 76.4%, much greater than earlier stated ranges of 12.3–35.9%, reflecting an alarming rise in resistance. Although elevated in MRSA, the prevalence fell within the broader 4–68% range observed in MSSA across other studies (29) These findings underscore the growing challenge of resistance and the need for routine testing.

Molecular analysis revealed the prevalence of erm inducible clindamycin-resistant genes among isolates: ermA (15.62%), ermB (3.12%), and ermC (18.75%), aligning with previously reported ranges of 11-81.9% for ermA and 0.66-44.44% for ermC across different regions. In inducible clindamycinresistant methicillin-resistant S. aureus isolates, gene occurrence was higher: ermC (73.38%), ermB (13.33%), and ermA (66.67%) (30) These results emphasize the genetic diversity contributing to resistance and highlight the importance of molecular surveillance to guide appropriate antibiotic use and mitigate the spread of resistant strains.

Conclusion

This research demonstrates a significant occurrence of inducible clindamycin resistance among S. aureus isolates, particularly MRSA, with a strong association to erm genes. The high rate of iMLSB resistance underscores the risk of treatment failure if clindamycin is prescribed without prior D-testing. Moreover, the molecular detection of erm genes confirms their critical role in mediating resistance and indicates the importance of integrating genetic into diagnostic surveillance protocols. Strengthening antimicrobial stewardship, promoting rational antibiotic use, and applying reliable diagnostic methods are essential strategies to limit the spread of resistant S. aureus strains and improve patient outcomes.

References

1. Deotale V, Mendiratta DK, Raut U, Narang P. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian J Med

- Microbiol 2010;28(2):124-6.
- 2. Khashei R, Malekzadegan Y, Sedigh Ebrahim-Saraie H, Razavi Z. Phenotypic and genotypic characterization of macrolide, lincosamide and streptogramin B resistance among clinical isolates of staphylococci in southwest of Iran. BMC Res Notes 2018;11(1):711.
- 3. Mokta KK, Verma S, Chauhan D, Ganju SA, Singh D, Kanga A, et al. Inducible clindamycin resistance among clinical isolates of Staphylococcus aureus from Sub Himalayan Region of India. J Clin diagnostic Res JCDR 2015;9(8):DC20.
- 4. Taylor TA, Unakal CG. Staphylococcus aureus Infection. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from:https://www.ncbi.nlm.nih.gov/books/NBK4418 68/
- 5. Pollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS Pathog 2018;14(6):e1007112.
- 6. Knox J, Uhlemann AC, Lowy FD. Staphylococcus aureus infections: transmission within households and the community. Trends Microbiol 2015;23(7):437–44.
- 7. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020;10:107.
- 8. Kim SJ, Chang J, Singh M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta (BBA)-Biomembranes 2015;1848(1):350–62.
- 9. Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, et al. Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev Vaccines 2016;15(11):1373–92.
- 10. Lacey KA, Geoghegan JA, McLoughlin RM. The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens. Pathogens 2016;5(1):22.
- 11. Foster TJ. Surface proteins of Staphylococcus aureus. Microbiol Spectr 2019;7(4):10–1128.

- 12. Kong C, Neoh H min, Nathan S. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins (Basel) 2016;8(3):72.
- 13. Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 2017;75(1):ftx005.
- 14. Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus colonization: modulation of host immune response and impact on human vaccine design. Front Immunol 2014;4:507.
- 15. Teng TS, Ji A ling, Ji XY, Li YZ. Neutrophils and immunity: from bactericidal action to being conquered. J Immunol Res 2017;2017(1):9671604.
- 16. Kumar S, Singh S, Kumar V, Datta S, Dhanjal DS, Sharma P, et al. Pathogenesis and antibiotic resistance of Staphylococcus aureus. In: Model organisms for microbial pathogenesis, biofilm formation and antimicrobial drug discovery. Springer; 2020. page 99–115.
- 17. Ondusko DS, Nolt D. Staphylococcus aureus. Pediatr Rev 2018;39(6):287–98.
- 18. Aqib A, Rodriguez-Morales AJ. Insights into drug resistance in Staphylococcus aureus. BoD–Books on Demand; 2021. http://dx.doi.org/10.5772/intechopen.87320
- 19. Zhu W, Clark N, Patel JB. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro. Antimicrob Agents Chemother 2013;57(1):212–9.
- 20. Nagarkoti D, Prajapati K, Sharma AN, Gyawali A, Manandhar S. Distribution of macrolide-lincosamide-streptogramin b antibiotics resistance genes in clinical isolates of staphylococci. J Nepal Health Res Counc. 2021 Jan 21;18(4):734-740.
- 21. Ma D, Chen Y, Chen T. Vaginal microbiota transplantation for the treatment of bacterial vaginosis: a conceptual analysis. FEMS Microbiol Lett 2019;366(4):fnz025.
- 22. Luchian I, Goriuc A, Martu MA, Covasa M. Clindamycin as an alternative option in optimizing periodontal therapy. Antibiotics 2021;10(7):814.

- 23. Murphy PB, Bistas KG, Patel P, Le JK. Clindamycin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from:https://www.ncbi.nlm.nih.gov/books/NBK519574/.
- 24. Armengol Alvarez L, Van de Sijpe G, Desmet S, Metsemakers WJ, Spriet I, Allegaert K, et al. Ways to improve insights into clindamycin pharmacology and pharmacokinetics tailored to practice. Antibiotics 2022;11(5):701.
- 25. Kishk RM, Anani MM, Nemr NA, Soliman NM, Fouad MM. Inducible clindamycin resistance in clinical isolates of staphylococcus aureus in Suez Canal University Hospital, Ismailia, Egypt. J Infect Dev Ctries 2020;14(11):1281–7.
- 26. Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, et al. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023;21(6):380–95.
- 27. Appiah VA, Pesewu GA, Kotey FCN, Boakye AN, Duodu S, Tette EMA, et al. Staphylococcus aureus nasal colonization among children with sickle cell disease at the Children's Hospital, Accra: Prevalence, risk factors, and antibiotic resistance. Pathogens 2020;9(5):329.
- 28. Ambachew A, Gebrecherkos T, Ayalew G. Prevalence and clindamycin resistance profile of Staphylococcus aureus and associated factors among patients attending the University of Gondar Comprehensive Specialized Hospital, Gondar, Northwest Ethiopia. Interdiscip Perspect Infect Dis 2022;2022(1):6503929.
- 29. Junaid K, Mustafa AUL, Arshad S, Farraj D, Younas S, Ejaz H. Burn wound infections: A serious threat of multidrug-resistant Staphylococcus aureus. Pak J Med Heal Sci 2019;13(3):804–7.
- 30. Timsina R, Timalsina B, Singh A. Screening of erm gene of inducible clindamycin resistant Staphylococcus aureus. J Inst Sci Technol 2019;24(2):39–43.