Efficacy of fentanyl, dexmedetomidine or lidocaine in attenuating the hemodynamic response to rigid bronchoscopy

Prof. Al Hadad Ali Mousa, Dr. Ahmed Mohammed Abd El-Mabood, Dr. Hamza Abo-Alam Mahmoud, Bahaa Mohammed Refaie

Abstract
Bronchoscopy entails significant manipulation of the upper and lower respiratory tracts with marked hemodynamic response and therefore represents a potentially greater hazard to safe anesthesia. There have been many attempts to attenuate these adverse effects. Dexmedetomidine is highly selective, short-acting central alpha 2 agonist. It has increasingly gained popularity among anesthesiologists as adjuvant to general and regional anesthesia techniques. This study was conducted to compare the efficacy of administering fentanyl, dexmedetomidine or lidocaine on control of hemodynamic changes to rigid bronchoscopy in pediatric patients. Ninety ASA I-II children aged 2-12 year were randomly assigned to 3 groups: fentanyl (F), dexmedetomidine (D) and lidocaine (Z). HR, SAP, MAP, DAP and SPO2 were measured and recorded. Results revealed that patients in the D group showed minimal changes in hemodynamic parameters in response to the procedure of rigid bronchoscopy. We concluded that dexmedetomidine can be used safely and effectively to attenuate the hemodynamic responses to rigid bronchoscopy in pediatric patients.

Introduction
The hemodynamic effects of laryngoscopy and intubation have been shown to be due to a sympatho-adrenal response to stimulation of the upper respiratory tract. Laryngoscopy produces a marked rise in heart rate and in arterial blood pressure. Bronchoscopy entails more manipulation of the upper and lower respiratory tracts, takes a significantly longer time and would be expected to produce a longer and possibly more severe cardiovascular response.1(2)(3) These hemodynamic responses are of short duration and are usually well tolerated. However, unwanted effects may occur as dysrhythmias and a rise in myocardial oxygen consumption. Myocardial ischemia may result and may be especially worrying in those patients with pre-existing hypertension and ischemic heart disease, and in the elderly with accompanying lung disease.4(5)(6) There have been many attempts to attenuate these adverse effects. They include topical anesthesia, systemic lidocaine, Alpha and beta blockers, nitroprusside, hydralazine, midazolam, deeper inhalational techniques and different doses of fentanyl but many of these drugs have adverse and long lasting effects, and the use of some of these agents may require invasive monitoring, which is not always appropriate and some of these agents shows variable response.7(8)(9,10) Fentanyl is a short acting synthetic opioid agonist 75-125 times more potent than morphine. It has a rapid onset but has a distinct time lag between the peak plasma fentanyl concentration and peak slowing on the EEG of around 3-7 minutes. This reflects the lag between achievement of a drug concentration in the plasma and the clinical effect. (11) Dexmedetomidine is a relatively new, highly selective, short-acting
central alpha 2 agonist. Activation of α2-receptors leads to dose-dependent sedation and anxiolysis, analgesia. (12,13) Dexmedetomidine has increasingly gained popularity among anesthesiologists and intensive care physicians abroad as adjuvant to general and regional anesthetic techniques as a sedative. Its administration potentiates the effect of other sedative and hypnotic agents while causing minimal respiratory depression. It also reduces the sympathetic response thus minimizing changes in blood pressure and heart rate during critical moments such as laryngoscopy and intubation. (14)(15) Intravenous (IV) lidocaine which is an aminoamide local anesthetic has been popular for its role in attenuating stress response to endotracheal intubation probably because of its theoretical advantages of suppressing cough reflex (16,17), preventing increases in intracranial pressure (18), attenuating circulatory responses (19), and its antiarrhythmic properties. (20) This study was conducted to compare the efficacy of systemic administration of either fentanyl, dexmedetomidine or lidocaine on control of hemodynamic responses to rigid bronchoscopy in pediatric patients.

Patients and methods

The study was conducted after approval of the Ethical committee of Sohag university hospital and obtaining informed written consent from the parents of the patients. Ninety ASA I-II children aged 2-12 year undergoing elective rigid bronchoscopy for removal of suspected airway foreign body were enrolled in this study. Patients excluded from the study were children with congenital disease, cerebral disease, cardiovascular disease, hepatic disease, renal disease, muscular disease, predicted difficulty in laryngoscopy and intubation, those requiring prompt interventions for a life-threatening situation (acutely compromised airway with SpO2 values below 70%) and patients scheduled for additional interventions or surgery subsequent to the bronchoscopy. The fasting time before anesthesia induction was at least six hours for solid foods and two hours for clear liquids. On arrival in the operating theatre, patients were randomly (using sealed envelopes) assigned to groups fentanyl (F), dexmedetomidine (D) and lidocaine (Z), vascular access was obtained. Anesthesia monitor was used for monitoring ECG, heart rate (HR), peripheral oxygen saturation (SpO2), systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressures at 5-minute interval. After the measurement of baseline HR, MAP, and SpO2, all patients received atropine 0.01 mg/kg and dexamethasone (0.1 mg/kg) IV to decrease secretions and prevent tracheal and laryngeal edema. Before induction, all children were preoxygenated and a 10 mg/kg crystalloid bolus was given. Group F (n = 30) received 2 mcg/kg fentanyl citrate, group D (n = 30) received 1 mcg/kg dexmedetomidine while group Z (n = 30) received 1.5 mg/kg lidocaine 2% and all these drugs were diluted with normal saline to make 20 ml volume and administered slowly IV over 5 minutes. Induction of anesthesia was conducted using 2 mg/kg propofol and 1.5 mg/kg succinylcholine administered intravenously. The bronchoscope was inserted 30 seconds after induction and the patients were manually ventilated with a ‘T’ piece connected to the side arm of the rigid bronchoscope. The fresh gas flow was adjusted to 10 l/min and in case of major air leakage, an oxygen flush valve was used for adequate filling of the reservoir bag and the airway pressure limit was adjusted to 20-30 cmH2O without desaturation of SpO2.
below 90%. All patients received 2% sevoflurane in 100% oxygen for maintenance of anesthesia. HR, SAP, MAP, DAP and SPO2 were measured and recorded before induction (t0), after induction (t1) before bronchoscopy (t2) immediately after insertion of the bronchoscope (t3) 5 minute after bronchoscopy (t4) and after extraction of the bronchoscope (t5) and 5 minutes after discontinuation of anesthesia (t6). At the end of the procedure endotracheal intubation was performed with manually controlled ventilation and anesthesia was discontinued and tracheal and oral secretions were suctioned as needed, and the patients were turned to the lateral decubitus position for recovery. When patients begin to demonstrate emergence from anesthesia by displaying a regular respiratory pattern, facial grimacing, or purposeful movement the patient was extubated. As regard to statistical analysis; data are presented as mean ± SD or number (%), SPSS version 16 was used for data analysis, analysis of variants (ANOVA) was utilized for comparison of continuous data between the study groups. Chi squared test was used for comparison of categorical data. Repeated measures were compared with repeated measured ANOVA. P value less than 0.05 was considered significant.

Results
Demographic data of the patients in the groups were comparable for age, weight, Hight and sex ratio with no significant statistical difference as shown in table (1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Lidocaine (n = 30)</th>
<th>fentanyl (n = 30)</th>
<th>dexmedetomidine (n = 30)</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>6.83±3.41</td>
<td>6.80±3.18</td>
<td>7.10±3.08</td>
<td>0.925</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>15 (50%)</td>
<td>16 (53.3%)</td>
<td>15 (50%)</td>
<td>0.96</td>
</tr>
<tr>
<td>F</td>
<td>15 (50%)</td>
<td>14 (46.7%)</td>
<td>15 (50%)</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>24.41±10.28</td>
<td>23.60±9.25</td>
<td>24.10±8.75</td>
<td>0.945</td>
</tr>
<tr>
<td>Hight (cm)</td>
<td>115.80±21.27</td>
<td>117.15±19.20</td>
<td>119.46±19.20</td>
<td>0.772</td>
</tr>
</tbody>
</table>

Table (1): demographic data
Patients in dexmedetomidine group showed significantly lower heart rate values (p value <0.001) at time of induction, before bronchoscope insertion, at time of bronchoscopy and five minutes after introduction of the bronchoscope, at time of bronchoscope removal and after cessation of anesthesia as shown in table (2).
Changes in the systolic blood pressure were significantly lower (p value <0.001) in the dexmedetomidine group after induction of anesthesia, before bronchoscope insertion, at time of bronchoscopy and five minutes after introduction of the bronchoscope and after cessation of anesthesia but not significantly different when measured after removal of the bronchoscope as shown in table no (3).

Table (2): variation in heart rate (beat/min)

<table>
<thead>
<tr>
<th></th>
<th>Z group</th>
<th>F group</th>
<th>D group</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>109±14.1</td>
<td>112±15.7</td>
<td>115±10.4</td>
<td>0.23</td>
</tr>
<tr>
<td>induction</td>
<td>101±8.3</td>
<td>103.75±9.9</td>
<td>98.4±9.9</td>
<td>0.001*</td>
</tr>
<tr>
<td>before</td>
<td>129.5±7.8</td>
<td>108.25±9.4</td>
<td>100.2±8.2</td>
<td><0.001*</td>
</tr>
<tr>
<td>insertion</td>
<td>138.25±8.4</td>
<td>111.25±10.0</td>
<td>103.1±9.6</td>
<td><0.001*</td>
</tr>
<tr>
<td>5 min</td>
<td>144.5±13.5</td>
<td>122.25±15.1</td>
<td>105.4±8.6</td>
<td><0.001*</td>
</tr>
<tr>
<td>removing</td>
<td>140±13.5</td>
<td>120.75±15.1</td>
<td>104.7±11</td>
<td><0.001*</td>
</tr>
<tr>
<td>post</td>
<td>136.25±12.5</td>
<td>129±14.1</td>
<td>111.2±3.5</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

Table (3): variation in systolic blood pressure (mmHg)

We found that changes in the mean blood pressure were significantly lower (p value <0.001) in the dexmedetomidine group after induction of anesthesia, before bronchoscope insertion, at time of bronchoscopy and five minutes after introduction of the bronchoscope, after removal of the bronchoscope and after cessation of anesthesia as shown in table no (4).
Table (4): changes in mean blood pressure (mmHg)

Variations in the diastolic blood pressure measured after induction of anesthesia, before bronchoscope insertion, at time of bronchoscopy and five minutes after introduction of the bronchoscope, after removal of the bronchoscope and after cessation of anesthesia were significantly lower (p value <0.001) in the dexmedetomidine group as shown in table no (5).

Table (5): changes in diastolic blood pressure (mmHg)

DISCUSSION

Regarding hemodynamic changes associated with the use of rigid bronchoscopy, our study revealed that the use of dexmedetomidine in a dose of 1 µ/kg as an adjuvant to general anesthesia was associated with less increase in heart rate, systolic, diastolic and mean blood pressures than the use of either fentanyl or lidocaine. Sagar G et al, 2014 compared the use of dexmedetomidine and fentanyl in attenuating the pressor response during laryngoscopy and intubation in 100 adult patients and found less rise in HR, SBP, DBP and MBP in the dexmedetomidine group however he used dexmedetomidine in dose of .6 µ/kg(25). Nermin G et al, 2013 compared the effect of dexmedetomidine versus fentanyl on preventing the hemodynamic response to intubation in 90 adult patients and found that heart rate was lower 5 and
10 min after intubation in dexmedetomidine Group.(26).

Mohamed H et al, 2015 compared the use of dexmedetomidine versus fentanyl in anesthesia of cochlear implantation in 52 pediatric patients where dexmedetomidine was given as a bolus dose of 0.4 µg/kg slowly infused over 10 min, then continuous infusion by a rate of 0.4 µg/kg/h until the end of surgery and found that dexmedetomidine group showed a decreased heart rate and mean arterial pressure compared to the baseline than fentanyl group. (27)**Suparto et al, 2010** conducted a randomized controlled trial on the effectiveness of dexmedetomidine versus fentanyl in attenuating the sympathetic response to direct laryngoscopy and endotracheal intubation in 56 patients which concluded that dexmedetomidine at 1 mcg/Kg and fentanyl at 1 mcg/Kg both produced lowering of blood pressures and cardiac rates, with significant decrease in mean heart rates and less increase in blood pressures with dexmedetomidine.**

Siddareddigari V et al, 2014 compared the use of either dexmedetomidine, esmolol or placebo to attenuate the pressor response to laryngoscopy and intubation in 90 adult patients and found That the mean arterial pressure was significantly increased in patients receiving esmolol after laryngoscopy and intubation compared with those receiving dexmedetomidine.(28)**Saya R et al, 2015** compared the use of intravenous lignocaine versus intravenous dexmedetomidine for attenuation of hemodynamic stress response to laryngoscopy and endotracheal intubation in 100 adult patients and found that maximum increase in heart rate and mean arterial pressure was less in dexmedetomidine than in lignocaine group.(29)**Sreejith H et al, 2016** studied the efficacy of IV dexmedetomidine versus IV lidocaine in attenuation of stress response during intubation for laparoscopic procedures in 70 adult patients and the study revealed that the dexmedetomidine group showed significantly less heart rate, systolic & diastolic BP rise in response to intubation compared to lidocaine group.(30)**AshrafMet al, 2015** compared the use of either dexmedetomidine (0.1µmg/kg), lidocaine (1mg/kg) or a combination of both (0.1µmg/kg + 1mg/kg) in attenuation of cardiovascular and catecholamine responses to tracheal extubation and anesthesia emergence in 60 adult hypertensive patients and he found that heart rate, mean arterial pressure, and rate–pressure product following tracheal extubation were lower in patients receiving the dexmedetomidine–lidocaine combination than in those receiving dexmedetomidine or lidocaine as a sole drug.(31)**Ahmed A H et al, 2018** studied the use of dexmedetomidine versus magnesium sulphate or lidocaine for blunting stress response to direct laryngoscopy and endotracheal intubation in 56 patients scheduled for abdominal surgery and observed that both dexmedetomidine and magnesium sulphate attenuated the rise in the mean arterial blood pressure significantly, but lidocaine failed to attenuate it. also dexmedetomidine only decreased the changes in the mean heart rate significantly.(32)**Gurulingappa et al, 2012** compared between IV bolus fentanyl (4 mcg/kg), lignocaine and placebo (normal saline) for attenuating cardiovascular responses to direct laryngoscopy and intubation in 75 adult patients and found that after intubation the incidence of tachycardia (HR>100/ min) was significantly greater in placebo and lignocaine group than in fentanyl group and the rise in SBP and DBP were also
16. STEINHAUS JE, GASKIN L. A study of intravenous lidocaine as a suppressant of cough reflex.

31. Koptan H, Moustafa A, Atalla H. Comparison of dexmedetomidine, lidocaine, and their combination in...
