Comparing efficacy, safety and stability of Femtosecond assisted LASIK and implantable collamer lens implantation in correction of high myopia

Document Type : Original Article

Authors

Department of Ophthalmology, Faculty of Medicine, Sohag University.

Abstract

PURPOSE: To compare efficacy, safety and stability of Femtosecond assisted LASIK and implantable collamer lens implantation in correction of high myopia.
METHODS: This study was non-randomized comparative prospective consecutive interventional study. It included 74 eyes with high myopia (≥ -6 Ds) of 40 patients attended to the outpatient ophthalmic clinic of Sohag university hospitals from the period from Jan.2016 to Jan.2017.
The patients were divided into two groups depending on: Degree of myopia, corneal thickness and corneal tomography.
The first group (34 eyes) of 20 patients were subjected to implantable collamer lenses implantation and the second group (40 eyes) of 40 patients were subjected to femtosecond assisted LASIK.
RESULTS: Group one (ICL group) showed UCVA preoperative was (1.90±0.29) and UCVA postoperative was (0.27±0.21) with (p-value

Keywords


1. Chung SH, Mazur E. Surgical applications of femtosecond lasers. Journal of biophotonics. 2009;2(10):557-72.
2. Lovisolo CF, Reinstein DZ. Phakic intraocular lenses. Survey of ophthalmology. 2005;50(6):549-87.
3. Sanders DR, Doney K, Poco M. United States Food and Drug Administration clinical trial of the Implantable Collamer Lens (ICL) for moderate to high myopia: three-year follow-up. Ophthalmology. 2004;111(9):1683-92.
4. Lackner B, Pieh S, Schmidinger G, Simader C, Franz C, Dejaco-Ruhswurm I, et al. Long-term results of implantation of phakic posterior chamber intraocular lenses. Journal of cataract and refractive surgery. 2004;30(11):2269-76.
5. Bloomenstein MR, Dulaney DD, Barnet RW, Perkins SA. Posterior chamber phakic intraocular lens for moderate myopia and hyperopia. Optometry (St Louis, Mo). 2002;73(7):435-46.
6. Pesando PM, Ghiringhello MP, Di Meglio G, Fanton G. Posterior chamber phakic intraocular lens (ICL) for hyperopia: Ten-year follow-up. Journal of Cataract & Refractive Surgery. 2007;33(9):1579-84.
7. Sanders D, Vukich JA. Comparison of implantable collamer lens (ICL) and laser-assisted in situ keratomileusis (LASIK) for low myopia. Cornea. 2006;25(10):1139-46.
8. Schallhorn S, Tanzer D, Sanders DR, Sanders ML. Randomized prospective comparison of visian toric implantable collamer lens and conventional photorefractive keratectomy for moderate to high myopic astigmatism. Journal of refractive surgery (Thorofare, NJ : 1995). 2007;23(9):853-67.
9. Kamiya K, Shimizu K, Hikita F, Komatsu M. Posterior chamber toric phakic intraocular lens implantation for high myopic astigmatism in eyes with pellucid marginal degeneration. Journal of cataract and refractive surgery. 2010;36(1):164-6.
10. Lesueur LC, Arne JL. Phakic posterior chamber lens implantation in children with high myopia. Journal of cataract and refractive surgery. 1999;25(12):1571-5.
11. Sanders DR, Vukich JA, Doney K, Gaston M. U.S. Food and Drug Administration clinical trial of the Implantable Contact Lens for moderate to high myopia. Ophthalmology. 2003;110(2):255-66.
12. Schmidinger G, Lackner B, Pieh S, Skorpik C. Long-term changes in posterior chamber phakic intraocular collamer lens vaulting in myopic patients. Ophthalmology. 2010;117(8):1506-11.
13. Lackner B, Pieh S, Schmidinger G, Hanselmayer G, Dejaco-Ruhswurm I, Funovics MA, et al. Outcome after treatment of ametropia with implantable contact lenses. Ophthalmology. 2003;110(11):2153-61.
14. Lee H, Kang SY, Seo KY, Chung B, Choi JY, Kim KS, et al. Dynamic vaulting changes in V4c versus V4 posterior chamber phakic lenses under differing lighting conditions. Am J Ophthalmol. 2014;158(6):1199-204.e1.
15. Du C, Wang J, Wang X, Dong Y, Gu Y, Shen Y. Ultrasound biomicroscopy of anterior segment accommodative changes with posterior chamber phakic intraocular lens in high myopia. Ophthalmology. 2012;119(1):99-105.
16. Baumeister M, Buhren J, Kohnen T. Position of angle-supported, iris-fixated, and ciliary sulcus-implanted myopic phakic intraocular lenses evaluated by Scheimpflug photography. Am J Ophthalmol. 2004;138(5):723-31.
17. Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol. 2009;147(2):189-97.e2.
18. Stern D, Schoenlein RW, Puliafito CA, Dobi ET, Birngruber R, Fujimoto JG. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm. Archives of ophthalmology (Chicago, Ill : 1960). 1989;107(4):587-92.
19. Ratkay-Traub I, Ferincz IE, Juhasz T, Kurtz RM, Krueger RR. First clinical results with the femtosecond neodynium-glass laser in refractive surgery. Journal of refractive surgery (Thorofare, NJ : 1995). 2003;19(2):94-103.
20.Durrie DS, Kezirian GM. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. Journal of cataract and refractive surgery. 2005;31(1):120-6.
21.Slade SG. The use of the femtosecond laser in the customization of corneal flaps in laser in situ keratomileusis. Current opinion in ophthalmology. 2007;18(4):314-7.
22.Kymionis GD, Kankariya VP, Plaka AD, Reinstein DZ. Femtosecond laser technology in corneal refractive surgery: a review. Journal of refractive surgery (Thorofare, NJ : 1995). 2012;28(12):912-20.
23.Chen X, Miao H, Naidu RK, Wang X, Zhou X. Comparison of early changes in and factors affecting vault following posterior chamber phakic Implantable Collamer Lens implantation without and with a central hole (ICL V4 and ICL V4c). BMC Ophthalmology. 2016;16(1):161.
24.Samuel A-M, Diego DO. Analysis of optimized profiles for ‘aberration-free’ refractive surgery. Ophthalmic and Physiological Optics. 2009;29(5):535-48.
25.Vega-Estrada A, Alio JL, Arba Mosquera S, Moreno LJ. Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap. Journal of refractive surgery (Thorofare, NJ : 1995). 2012;28(10):689-96.
26.Lim T, Yang S, Kim M, Tchah H. Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. Am J Ophthalmol. 2006;141(5):833-9.
27.Montés-Micó R, Rodríguez-Galietero A, Alió JL, Cerviño A. Contrast sensitivity after LASIK flap creation with a femtosecond laser and a mechanical microkeratome. Journal of refractive surgery (Thorofare, NJ : 1995). 2007;23(2):188-92.
28. Koch DD, Kohnen T, Obstbaum SA, Rosen ES. Format for reporting refractive surgical data. Journal of cataract and refractive surgery. 1998;24(3):285-7.
29. Krueger RR, Talamo JH, McDonald MB, Varnell RJ, Wagoner MD, McDonnell PJ. Clinical Analysis of Excimer Laser Photorefractive Keratectomy Using a Multiple Zone Technique for Severe Myopia. American Journal of Ophthalmology. 1995;119(3):263-74.
30. Stulting RD, Carr JD, Thompson KP, Waring GO, Wiley WM, Walker JG. Complications of laser in situ keratomileusis for the correction of myopia. Ophthalmology. 1999;106(1):13-20.
31. Yamane N, Miyata K, Samejima T, Hiraoka T, Kiuchi T, Okamoto F, et al. Ocular Higher-Order Aberrations and Contrast Sensitivity after Conventional Laser In Situ Keratomileusis. Investigative Ophthalmology & Visual Science. 2004;45(11):3986-90.
32. Igarashi A, Kamiya K, Shimizu K, Komatsu M. Visual Performance after Implantable Collamer Lens Implantation and Wavefront-Guided Laser In Situ Keratomileusis for High Myopia. American Journal of Ophthalmology. 2009;148(1):164-70.e1.
33. Sanders DR, Vukich JA. Comparison of implantable contact lens and laser assisted in situ keratomileusis for moderate to high myopia. Cornea. 2003;22(4):324-31.
34. Shin JY, Ahn H, Seo KY, Kim EK, Kim TI. Comparison of higher order aberrations after implantable Collamer Lens implantation and wavefront-guided LASEK in high myopia. Journal of refractive surgery (Thorofare, NJ : 1995). 2012;28(2):106-11.
35.Dougherty PJ, Priver T. Refractive outcomes and safety of the implantable collamer lens in young low-to-moderate myopes. Clin Ophthalmol. 2017;11:273-7.
36. Perez-Vives C, Albarran-Diego C, Garcia-Lazaro S, Ferrer-Blasco T, Montes-Mico R. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator. Arquivos brasileiros de oftalmologia. 2014;77(2):103-9.
37.Chen X, Guo L, Han T, Wu L, Wang X, Zhou X. Contralateral eye comparison of the long‐term visual quality and stability between implantable collamer lens and laser refractive surgery for myopia. Acta ophthalmologica. 2018.
38.Amar Agarwal M, Kumar DA. Visco-cannula assists in reinversion of phakic lens. Ocular Surgery News. 2009;20(4):25.
39. Bissen-Miyajima H. Complications of Excimer Laser Surgery.  Cataract and Refractive Surgery: Springer; 2006. p. 101-11.
40.Hashemian SJ, Bigzadeh F, Foroutan A, Tajoddini S, Ghaempanah MJ, Jafari ME. Outcomes and Complications of Implantable Collamer Lens and Toric Implantable Collamer Lens for the Correction of High Myopia with and without Astigmatism (One Year Prospective Study). Iranian Journal of Ophthalmology. 2013;25(1):8.
41.Senthil S, Choudhari NS, Vaddavalli PK, Murthy S, Reddy J, Garudadri CS. Etiology and management of raised intraocular pressure following posterior chamber phakic intraocular lens implantation in myopic eyes. PloS one. 2016;11(11):e0165469.
42.Farjo AA, Sugar A, Schallhorn SC, Majmudar PA, Tanzer DJ, Trattler WB, et al. Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120(3):e5-e20.